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3 introduction

I Introduction

probability spaces

A probability space, denoted, (Ω, F ,P), describes the environment in which
all of our case-studies will take place. It is equipped with a sample space, Ω,
which contains all possible outcomes of our case-study, an event space, F , to
describe what subsets of Ω (“events”) are relevant to our study, and finally the
probability measure, P, which assigns a probability to each event A ⊆ F .

Kolmogorov’s Axioms

1.1 Kolmogorov’s Axioms

1. 0 ≤ P (A) ≤ 1

2. P (∅) = 0 and P (Ω) = 1

3. If (An, n ≥ 1) are disjoint events, then P(
⋃
n≥1

An) =
∑
n≥1

P(An)

A bit of notation:
[n] = {1, 2, ...n}
AB = A ∩ B
(n)k = n(̇n−1) · ... ·(n−k+1)

These axioms imply that:
P(A) = 1 − P(Ac)

where Ac ∪ A is by definition equal to the sample space Ω.

Consider a sufficiently random number generator which spits out values from
1 to 50, from which we pick 3 numbers in succession. The following are
common models and their resulting probabilities.

Experiment Type Probability Model P

Sampling with replacement Ω = [50]3 = [50] × [50] × [50] P(a, b, c) = 1
503

Sampling without replacement Ω = {(a, b, c) : a , b , c , a} P(a, b, c) = 1
50·49·48

Unordered with replacement Ω = {permutations of (a, b, c)} P(a, b, c) = 1
503·3!

Unordered without replacement Ω = {permutations of (a, b, c) : a , b , c , a} 1
50·49·48·3! =

(50
3
)

1.2 Monotonicity of Probability
If A ⊆ B, then P(A) ≤ P(B)

Proof.A ⊆ B, B = A∪AcB =⇒ P(B) = P(A) + P(AcB) ≥ P(A), so P(A) ≤ P(B)
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Infinite Sampling

In the previous examples we considered events that were defined finitely. Let’s
now take a fair coin toss, but repeat it an arbitrary number of times, n. We can
model a probability space which defines the odds of seeing heads for the first
time after so many tosses:

Ω = N with P(n) = P (T , T , T , ..., T ,︸           ︷︷           ︸
n−1 times

H) = 1/2n

Note that
∑
n≥1

1/2n = 1, which satisfies the axiom P(Ω) = 1.

When we give the coin a bias, p, toward heads, P(n) = (1− p)n · p instead. Even
still, P(Ω) = 1, which you can show for yourself.

Funky stuff can happen when you deal with infinities. Take a dartboard D
with area 1, and notate an arbitrary point on the dartboard p. Then, we can
show that ∀p ∈ dartboard, the odds of you hitting p are 0.

Proof. We claim that ∀p,P(p) = 0. Take p to be arbitrary. Let δ := d(p, ∂D).
Consider B(p, ε), the open ball around p, with δ > ε > 0. P(B(p, ε)) = πε2

=⇒ P(p) < πε2 =⇒ P(p) = 0, since ε arbitrary.

Inclusion-Exclusion Formula

One of the Kolmogorov Axioms is that P(
⋃
n≥1

An) =
∑
n≥1

P(An) for pairwise

disjoint events. But what about events for which Ai ∩ Aj , ∅? We can work
out the first few iterations:

(1) P(A) = (A)

(2) P(A ∪ B) = P(A) + P(B) + P(AB)

(3) P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(AB) − P(AC) − P(BC) + P(ABC)

As you can see, the expansions get progressively more unruly as the number
of non-disjoint events increase. We can think of these terms as all the possible
intersections and disjoint areas of overlapping sets.

P(B)

P(AB)

P(A) P(A)

P(B) P(C)

P(ABC)

P(AC)P(AB)

P(BC)
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These equations can be generalized. Define the union of events {A1, ..., An} for
which Ai ∩ Aj , ∅may be true.

1.3 Inclusion-Exclusion Formula

P
(

n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai)

−
∑

1≤i1<i2≤n
P(Ai1 ∩ Ai2)

+
∑

1≤i1<i2<i3≤n
P(Ai1 ∩ Ai2 ∩ Ai3)

−... + (−1)n−1P(A1A2...An)

↓

=
n∑

k=1
(−1)k−1

∑
P(Ai1Ai2 ...Aik )︸                 ︷︷                 ︸

1≤i1<i2<...<ik≤n

Random Variables

Given a probability space (Ω, F ,P), we consider a random variable X to be a
function f : Ω→ R.

For example, consider rolling of two die, with Ω = [6] × [6], as shown before. More experiments:
You roll a die 10 times.
Define N : Ω → R to be
the number of 6’s that
appear. What is P(N = 4)?

Let Ω = [0,1] and
A(ω) = tan(π2 ω). What is
P(A ≥ 1)? What is A(1)?

Let X be the sum of the two rolls. This can be thought of as a function from
the sample space to R, X((i, j)) = i + j, and is random. We have:

P(X = 5) = P(ω ∈ Ω : X(ω) = 5) = P(X−1(5))

Discrete We’ll consider 3 classes of random variables. Let X be a random variable.
Then X is called discrete if there is a subset S of R, finite or countable,
such that P(X ∈ S) = 1.

Let SX := {x ∈ R : P(X = x) > 0} be the set of events for which a positive
probability is assigned. Then the probability mass function of X is

pX(x) = P(X = x) for x ∈ SX

Ex. The sum of two die rolls, denoted X(i, j), can take on values S =
{1, 2, ..., 12}. Since S is a finite subset of the reals, and P(X ∈ S) = 1, X is
a discrete random variable.

Continuous X is called continuous if ∃f : R→ [0,∞) such that ∀a, b : −∞ ≤ a < b ≤
∞ we have

P(X ∈ [a, b]) =

b∫
a

f (x)dx

This is called the probability density function, or the distribution of X.

Degenerate X is called degenerate if ∃ω : P(X = ω) = 1
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II Conditional Probability
conditioning

Given events A and B ∈ Ω, the conditional probability P(A|B) is, in English,
the “probability of A given that B occurs.” When P(A) > 0, we define this
probability as the following:

P(A|B) =
P(AB)
P(B)

Examples:

1. Toss a coin 2 times. What is P(Two heads | First is heads)?

P =
1/4
1/2

=
1
2

from above

2. Sample 3 balls from an urn. What is P(2 yellow | At least 1 yellow)?
Without knowing the parameters of the urn, we have:

P(2 yellow and at least 1 yellow)
P(At least 1 yellow)

=
P(2Y )

P(≥ 1 Y )

We can derive from the definition of conditional probability the following
identity:

P(ABC) = P(A)P(BC|A) = P(A) · P(B|A) · P(C|AB)

which generalizes easily to

P(A1A2...An) = P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An−1)

where A1, A2, ..., An have P > 0.

2.1 Law of Total Probability
Given that A1, B1, B2, ..., Bn ∈ Ω, that B1, B2, ..., Bn partition Ω, and that
P (Bi) > 0, we have

P(A) =
n∑
i=1

P(ABi) =
n∑
i=1

P(A|Bi)P(Bi)

A further manipulation of our definition of conditional probability brings us
the following:
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2.2 Bayes’ Formula

P(A|B) =
P(B|A)P(A)

P(B)
given that all are well-defined

P(B) can further be expanded as P(B) = P(B|A)P(A) + P(B|Ac)P(Ac), which
makes for a slightly more complex variation of Bayes’ Formula.

independence

A ∩ B

A ∩ Bc

B ∩ Ac

Bc ∩ Ac

A Ac

Bc

B

Two events A, B are called independent if P(AB) = P(A)P(B). We have the
implication, then, that two independent events A and B satisfy P(A|B) =
P(A) and vice-versa. We can generalize the definition of independence to the
following:

Events A1, A2, ..., An are independent iff

∀I ∈ [n] P

⋂
i∈I

Ai

 =
∏
i∈I

P(Ai)

We can also extend our concept of independence to variables. Let X1, X2, ..., Xn

be random variables. They are mutually independent if

∀B1, B2, ..., Bn ⊆ R P(∩1≤i≤nXi ∈ Bi) =
n∏
i=1

P(Xi ∈ Bi)

We call discrete random variables X1, ..., Xn independent if

P(X1 = x1, X2 = x2, ..., Xn = xn) =
n∏
i=1

P(Xi = xi)

where P(Xi = xi) > 0 (or else the condition would be trivial). Note that this
definition is derived from our broader definition of random variables, and
thus necessitates a proof:

Proof.Let Si := {xi : P(Xi = xi) > 0}. We’ll first show that general independence
implies our definition for discrete variables, and then the converse.

( =⇒ ) Fix x1, x2, ..., xn such that xi ∈ Si ∀1 ≤ i ≤ n. Then we can take
Bi := {xi}, and we are done.

(⇐= ) Fix B1, B2, ..., Bn ∈ R. Then: {Xi ∈ Bi} = {Xi ∈ BiSi} ∪ {Xi ∈ BiS
c
i }.

Based on our understanding of discrete random variables, though, P(Xi ∈
BiS

c
i ) = 0 =⇒ {Xi ∈ Bi} = {Xi ∈ BiSi}. Si contains disjoint events, and so
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BiSi does as well. We can then say P(Xi ∈ Bi) =
∑

xi∈BiSi

P(Xi = xi)

=⇒
n∏
i=1

P(Xi ∈ Bi) =
n∏
i=1

 ∑
xi∈BiSi

P(Xi = xi)


=

∑
xi∈BiSi

[
n∏
i=1

P(Xi = xi)
]

=
∑

xi∈BiSi

P(X1 = x1, ..., Xn = xn) from hypothesis

= P
 ⋃
xi∈BiSi

{X1 = x1, ..., Xn = xn}


= P(X1 ∈ B1S1, X2 ∈ B2S2, ..., Xn ∈ BnSn)

= P(X1 ∈ B1, X2 ∈ B2, ..., Xn ∈ Bn) since we know Xi ∈ Si

We also have a notion of independence for continuous random variables
X1, ..., Xn:

P(Xi ∈ (ai , bi) for 1 ≤ i ≤ n) =
n∏
i=1

P(Xi ∈ (ai , bi))

for any −∞ ≤ ai < bi ≤ ∞.

Examples: Suppose we sample k elements from [n] = {1,2,3, ..., n}, with a
random variable Xi being our ith sample. With replacement, we have

Ω = [n]k ,P(Xj = i) =
1
n

and P(X1 = i1, X2 = i2, ..., Xk = ik) =
1
nk

=
k∏

j=1

1
n

Without replacement, we have P(X1 = i1, X2 = i2, ..., Xk = ik) = 1
(n)k

P(Xj = i) =
n − 1
n
· n − 2
n − 1

· ... · 1
n − j − 1

· ... · n − k + 1
n − k + 1

=
(n − 1)(n − 2)...(n − k + 1)
n(n − 1)(n − 2)...(n − k + 1)

=
1
n

Note that X1, ..., Xk are not independent when drawn without replacement.

We call events B1 and B2 conditionally independent if

P(B1B2|A) = P(B1|A)P(B2|A)

for A : P(A) > 0. In general, we have

P

⋂
i∈I

Bi |A

 =
∏
i∈I

P(Bi |A)
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probability distributions

Before we define a distribution, note some preliminaries:

1. (a) If we have a set of independent random variables, X and Y , then
f (X) and g(Y ) are also independent for any f , g : R→ R.

(b) Similarly, if we have independent random variables X1, X2, ..., Xn, Xn+1, ..., Xm

and functions f : Rn → R and g : Rm → R, then f (X1, ..., Xn) and
g(Xn+1, ..., Xm) are independent from one another.

(c) Lastly, a set of independent random variables X1, X2, ..., Xn remains
independent for f (X1), f (X2), ..., f (Xn) for f bijective.

2. A discrete random variable X can take possible values SX := {x : P(X =
x) > 0}. Define the range of the variable X as range(X) := {X(ω) : ω ∈ Ω}.
Note that, in general, S , range(X).

(a) For example, let Ω = R and P(1) = P(2) = P(3) = 1
3 . Let the random

variable X(ω) = ω. Then, S = {1, 2, 3}, while range(X) = Ω itself.

Binomial Distribution

Flip a coin n times in succession. We can express the sample space as Ω =
{0, 1}n. The probability of a particular arrangement, P(ω1, ω2, ..., ωn) is pi(1 −
p)j , where i and j tally the number of heads (1) or tales (0), respectively.

Let H determine, for a sequence of n flips, how many heads appear. H is then
a discrete random variable which takes on values S = {0, 1, ..., n}.
The probability that there are exactly k heads, P(H = k), is equal to the proba-
bility expressed above for i = k, times the number of unique arrangements
such that i = k.

P(H = k) =
∑

arrangements

pk(1 − p)n−k =
(
n
k

)
pk(1 − p)n−k

We call this probability the binomial distribution, or X ∼ Bin(n, p), where a
discrete random variable X takes on possible values {0, 1, ..., n} and P(X = k) =(n
k

)
pk(1 − p)n−k for k ∈ [0, n]

Bernoulli Distribution

We have X ∼ Ber(p) if X takes on either 0 or 1, and P(X = 1) = p and
P(X = 0) = 1−p. The above coin example contains both Bernoulli and binomial
distributions.

Let B1, B2, ..., Bn be Ber(p) and independent. Then we have that S = B1 + B2 +
... + Bn is Bin(n, p).

Proof.
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Fix k ∈ {0, 1, ..., n}. Then

P(S = k) = P

 ⋃
i∈{0,1} for #(i=1)=k

{B1 = i1, B2 = i2, ..., Bn = in}


=

∑
i∈{0,1} for #(i=1)=k

[P(B1 = i1, B2 = i2, ..., Bn = in)]

=
∑

pk(1 − p)n−k =
(
n
k

)
pk(1 − p)n−k

Geometric Distribution
A bit of notation:

Define
n⊗
i=1

Ber(p) to be

the probability Pn of a
Bernoulli-distributed ar-
rangement ω ∈ Ω, with
Ω = {0, 1}n

To define a geometric distribution, we’ll first need to give structure to the idea
of infinite coin flips (or trials).

For Ω = {0, 1}n, we have probability
n⊗
i=1

Ber(p). Dropping the last coordinate

and adding an additional coordinate gives

Ω = {0, 1}n−1 ⇐⇒
n−1⊗
i=1

Ber(p) and Ω = {0, 1}n+1 ⇐⇒
n+1⊗
i=1

Ber(p)

We can then interpolate a “projective limit,” in which

Ω = {0, 1}N ⇐⇒
⊗
i≥1

Ber(p)

Now we have something of a structure for infinite trials.

Let G(ω) = inf{i ≥ 1 : ωi = 1}, or the first successful coin flip in an arbitrary
series of flips. Then we have thatThere are k − 1 unsuccess-

ful trials at probability p −
1, followed by one success
with probability p.

P(G = k) = (1 − p)k−1p

This distribution is called geometric, with G ∼ Geom(p), where p is the proba-
bility associated with

⊗
i≥1

Ber(p).

These three distributions are the most fundamental to the remainder of these
notes. The following two distributions will come up occasionally, but are
generally extra-curricular.

Hypergeometric Distribution

Suppose we are sampling without replacement from an urn of yellow and
purple balls. Define the random variable X as the number of yellow balls
chosen out of k draws, from an urn containing N total balls. Let there be m
yellow and N −m purple balls.
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We then say that X ∼ Hyp(N,m, k) with

P(X = j) =

(k
j

)(N−m
k−j

)(N
k

)
Rayleigh Distribution

We consider the “birthday paradox.” Let there be k people in a room. What is
the probability that no 2 people share the same birthday?

P = 1 · 364
365
· 363

365
· ... · 365 − (k − 1)

365
=

k∏
i=2

(
1 − i − 1

365

)
The “paradox,” which isn’t one, occurs when we ask the question “how many
people should there be in a room so that it is likely (i.e. P > 1

2 ) that at least
two people share birthdays.” Computing a few guesses using the equation,
noting that we are looking for the compliment of the above probability, gives
the answer: 23 people. Which seems way too small, hence the name.
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III Random Variables
pdfs and cdfs

Probability Density Functions

Consider a continuous random variable X. We can model the probability that
X lies in an interval as follows:

P(X ∈ [a, b]) =

b∫
a

f (x)dx

where f : R→ [0,∞]

A necessary condition here is that
∫
R
f (x)dx, which integrates over the entire

sample space, must be equal to 1. We call f the probability density function of
X, which we’ve seen before.

Examples:

1. A uniformly distributed random variable X ∼ Unif[a, b] has pdf

f (x) =
1

b − a

noting that the area of a rectangle with width b-a and height 1
b−a is 1, as

required.

2. A variable is called Wigner distributed if its pdf is f (x) = 2
π

√
1 − x2,

defined for |x| ≤ 1, a.k.a. a semicircle. Verify for yourself that the sample
space has probability 1.

3.1 Analysis of PDF If X is a continuous r.v. with pdf f , then we have
the following:

∀a ∈ R f (a) = lim
ε→0

P(X ∈ [a, a + ε])
ε

Proof. From above, we have P(X ∈ [a, a + ε]) =
a+ε∫
a

f (x). Thus:

lim
ε→0

P(X ∈ [a, a + ε])
ε

= lim
ε→0

1
ε

a+ε∫
a

f (x) = f (a)

Even if f has discontinuities, the proposition above still holds so long as there
are finitely many of them.
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Cumulative Density Functions

Let F : R→ [0, 1] be a function defining

P(X ≤ x) = F(x)

We call this the cumulative density function of X.

Examples:

1. For a coin toss X ∼ Ber(p), the cdf looks like: F = 0 for all x < 0,
F = 1 − p for x ∈ [0, 1), and F = p for x ≥ 1.

2. For X ∼ Geom(p), the first heads in an infinite series of coin tosses, we
have

F(x) =



0 for x < 1

1 − (1 − p)k for k ≤ x < k + 1

...

1 − (1 − p)⌊x⌋ for x ≥ 0

Thus, P(X ∈ (a, b]) = F(b)−F(a). If X is continuous, we may further remove the
point b, and conclude P(X ∈ (a, b)) = F(b) − F(a), or similarly P(X ∈ [a, b]) =
F(b) − F(a).

We can also define a cdf for discrete variables. Let ρ(s) : S → [0,1] be its
probability mass function, with s ∈ SX being a possible value X can take. Then
F(x) is

P(X ≤ x) =
∑

s∈S with s≤x
p(s)

Given that S has no limit points, we have that F is piecewise constant. Con-
versely, we can say that both S = {discontinuities off } and X is discrete if X is
piecewise constant.

Similarly, for a continuous variable with pdf f (s), F(x) is

P(X ≤ x) =

x∫
−∞

f (s)ds

3.2 CDF↔ PDF
If a continuous random variable exists everywhere but finitely many
points, then we can say that F′(x) = f (x)
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3.3 Properties of cdfs

1. F is non-decreasing

2. F is right continuous

3. limx→−∞ = 0 and limx→∞ = 1

The proofs for these are good exercise. For (2) and (3), define

En ↑ E if E1 ⊆ E2 ⊆ ... ⊆ En ⊆ ... and E =
⋃
n≥1

En and

En ↓ E if E1 ⊇ E2 ⊇ ... ⊇ En ⊇ ... and E =
⋂
n≥1

En

for a sequence of events {En}. One can characterize limits and continuity using
sequences, per analysis.

expectations

For a discrete random variable with possible values S, define the expectation
of X as

EX =
∑
k∈S

kP(X = k)

For a continuous r.v. with pdf f , its expectation is

EX =
∫
R

xf (x)dx

One can think of expectations as a statistical average of events over very long
periods of time. In future sections, we’ll define other qualities of random
variables using expectations. Note the following property:

3.4 Linearity of Expectation
For random variables X and Y and a constant k, E[X+Y +k] = EX+EY +k

Similarly, for independent variables X and Y , we can say E[XY ] = EX · EY .
The proofs for both these results will come up when we study multivariate
distributions.

Examples:

1. Consider X ∼ Bin(n, p). Then we have

EX =
n∑

k=0
kP(X = k) =

n∑
k=1

k
(n
k

)
pk(1 − p)n−k

= np
n∑

k=1

(n−1
k−1

)
pk−1(1 − p)n−k = np

n−1∑
j=0

(n−1
j

)
pj(1 − p)n−1−j = np
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the last step borrowing from the binomial theorem.

2. The expectation of X ∼ Bin(n, p) can be figured using linearity of expec-
tation:

X = H1 + H2 + ... + Hn

where Hi is the indicator function for a coin flip. Then

EX = EH1 + EH2 + ... + EHn = np

since EHi always equals p (you can show this for yourself easily).

3. The expectation of X ∼ Geom(p) is 1
p . The proof for this requires a clever

rearrangement of summations (a grid to count occurrences of (1 − p)i

may help).

4. Throwing darts at a circular board of radius r0, we have pdf f (t) = 2t
r2

0

(a proof for this is needed, but it’s not complicated). We can calculate
EX as

EX =

r0∫
0

2t

r2
0

=
2t3

3r2
0

∣∣∣∣∣∣r0

0

=
2
3
r0

We can take X, itself a function from Ω→ R, and map it to anything we’d
like. Define g : R→ R and have g(X). This is another random variable with
Ω→ g(X(ω)).

If X is discrete with possible values S, then

Eg(X) =
∑
x∈S

g(x)P(X = x)

This is sometimes called the “law of the unconscious statistician” (LOTUS for
short). Similarly, for a continuous variable with pdf f , we have

Eg(X) =
∫
R

g(x)f (x)dx

Examples:

It’s Thanksgiving, and you’re breaking the wish-bone with your sibling.
Suppose this wishbone has length 1, is perfectly straight, and has a
uniformly random breaking point U ∼ Unif[0,1]. We want to find the
expected length of the winner’s side, given that the person who breaks
off a larger piece wins. We can express this as

Emax(U, 1 − U ) =

1∫
0

max(x, 1 − x)dx

since the pdf of U is just 1.
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For 0 ≤ x ≤ 1
2 ,

1/2∫
0

max(x,1 − x)dx =
1/2∫
0

1 − xdx = 3
8 . Similarly, for 1

2 ≤

x ≤ 1, we have
1∫

1/2

max(x, 1 − x)dx =
1∫

1/2

xdx = 3
8 . Thus, Emax(U, 1 − U ) =

1∫
0

max(x, 1 − x)dx = 3
4 . One can generalize this for arbitrary length l.

Characterizations of Variables Using Expectation

Define the nth moment of a random variable X to be

E[Xn]

We say that the first moment is the mean, as described above, and sometimes
notated as µ. The nth central moment is defined to be E[(X − µ)n].

It is a fact, though not important yet, that a bounded random variable’s
probability distribution (“bounded” in the sense that X is equipped with
some r such that P(|X | < r) = 1) can be uniquely determined by considering
E[Xn] ∀n ≥ 1. We’ll revisit this in Part V.

Define the variance of a random variable to be E[(X − µ)2], usually denoted
Var(X). Furthermore,

√
Var(X) := σ , the standard deviation of X. A useful

alternate form for variance is:

Var(X) = E[X2] − [EX]2

Examples:

1. Let X ∼ Ber(p). Then EX =
∑

k=0,1
kP(X = k) = p and E[X2] =

∑
k=0,1

k2P(X =

k) = p =⇒ Var(X) = p − p2 = p(1 − p) = pq

2. Let X ∼ Bin(n, p). From above, EX = np. A similar proof will yield
E[X2] = n(n − 1)p2 + np =⇒ Var(X) = np(1 − p) = npq

3. Let X ∼ Unif[a, b]. Then EX =
∫
R

x
b−a , but since f only defined for a ≤ x ≤

b, this is just
b∫
a

x
b−a = a+b

2 . Similarly, one can find that E[X2] = b2+ab+a2

3

Before the next section, here’s a quick look at medians and quantiles. Define
the median of a r.v. X to be a real value r such that

P(X ≤ r) ≥ 1
2

and P(X ≥ r) ≥ 1
2

This is a special case of the nth quantile of X, which is similarly

P(X ≤ r) ≥ p and P(X ≥ r) ≥ 1 − p
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IV Inter-Distributive
Approximations

the gaussian

A general, awesome quality of probability is that—across an infinite number of
arrangements in which one can observe probabilistic events—the distribution
of real-life randomness almost always looks the same. We can characterize the
eventual similarity of different rigorous distributions in a rigorous way.

As a precursor to this chapter, let’s define a continuous random variable X to
be Gaussian, or Normal distributed, usually denoted N (0, 1), if it has pdf

ϕ(x) =
1
√

2π
e
−x2

2

Unlike previous distributions we’ve looked at, this one is continuous. We can
state it’s mean and variance as follows:

EX =
∫
R
xϕ(x)dx = 0 E[X2] =

∫
R
x2ϕ(x)dx = 1 =⇒ Var(X) = 1

Notice that, in our notation N (0, 1), the first parameter equals our mean, and
the second our variance. These are, in actuality, the parameters we use [i.e.
Var(µ, σ2)]

4.1 Modifying µ and σ2

Let X ∼ N (0, 1). Then the random variable Y = σX + µ is N (µ, σ2)

The cdf of X ∼ N (0, 1) is notated

P(X ≤ x) = Φ(x) =

x∫
−∞

ϕ(s)ds

With generality, the cdf of Y ∼ N (µ, σ2) is

P(Y ≤ x) = P
(
X ≤

x − µ
σ

)
= Φ

(x − µ
σ

)
Since we have f (x) = F′(x), the pdf of Y is

f (x) =
1

√
2πσ2

e
−(x−µ)2

2σ2

de moivre-laplace theorem

Let Sn ∼ Bin(n, p) be a binomially-distributed random variable. From previous
sections, note that ESn = np and Var(Sn) = npq
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Define S∗n := Sn−np√
npq (this is something along the lines of Sn’s fluctuation about

its mean). Then we have

4.2 Binomial Central Limit Theorem
Let −∞ < a < b < ∞. Then we have

P(S∗n ∈ [a, b])→
b∫
a

ϕ(x)dx as n→∞

Similarly, if np(1 − p) > 10, as a rule of thumb,

P(S∗n ∈ [a, b]) is close to Φ(b) − Φ(a)

If we are merely considering the probability that Sn = k (without range), the
approximation Φ(b) − Φ(a) will fail, since Φ(k) − Φ(k) = 0. Thus, we preform a
“continuity correction,” in which we note that P(Sn = k) = P(Sn ∈ [k− 1

2 , k+ 1
2 ]),

and compute the Gaussian as usual.

A corollary of the above theorem is the law of large numbers, which is

4.3 Binomial Law of Large Numbers

∀ε > 0 lim
n→∞

P
(∣∣∣∣∣Snn − p

∣∣∣∣∣ < ε
)

= 1

where Sn is a binomially-distributed variable.

poisson approximations

Let X be a discrete random variable. We say it is poisson distributed, or X ∼
Poi(λ), if

P(X = k) =
e−λλk

k!
Its mean and variance, both of which aren’t too hard to verify, is EX = λ and
Var(X) = λ.

4.4 Poisson Approximating
Let Sn be Sn ∼ Bin(n, p) and λ = np. Then we have

lim
n→∞

P(X = k) =
e−λλk

k!

This approximation is has an error bound
|P(Bin(n, p) ∈ A) − P(Poi(λ) ∈ A)| ≤ np2 ∀A ⊆ N and thus, if np2 ≪ 1,
then a poisson approximation should be good.

Qualitatively, poisson distributions are appropriate in settings where
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(a) One counts the number of rare events

(b) There are many possible events

(c) Each event has approximate independence

For example, we could consider the number of customers in the 2nd check-
out line at the Mont-Royal Provigo (the probability that you or I are in this
particular line is quite low, with approximate independence, and there are
many millions of possible arrangements of Montrealers being or not being in
this line at various times).

exponential distributions

Let λ > 0 be a fixed real value. We say that a random variable X is exponentially
distributed, or X ∼ Exp(λ), if

P(X > t) = e−λt ∀t ≥ 0

We can easily derive its cdf, P(X ≤ t) = 1 − P(X > t) = 1 − e−λt. Furthermore,
we can see that its pdf is

F′(t) = f (t) =

0 for t < 0

λe−λt for t ≥ 0

Employing some calculus, one can find that EX = 1
λ and Var(X) = 1

λ2 . The
exponential distribution has some surprising properties, the first of which is
that it acts the same along shifted time-frames, as follows:

4.5 Memoryless Property of Exponentials
If X ∼ Exp(λ), then ∀s, t > 0 we have

P(X > t + s | X > t) = P(X > s)

Proof.

P(X > t + s | X > t) = ����������:P(X>t+s)

P(X > t + s, X > t)
P(X > t)

=
e−λ(t+s)

e−λt
= e−λs = P(X > s)

There also exists a converse, which states that if a random variable has the
memoryless property as given above, then ∃λ∗ such that X ∼ Exp(λ∗)

As with other distributions we’ve looked at, the exponential approximates, at
its limit, a geometric distribution. Here are the formal conditions
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4.6 Exponential Approximation of the Geometric Distribution
Let Xi be independent Bernoulli variables, Ber(λn ), with λ

n < 1. Then
define G := inf{i : Xi = 1}, and note that this is a Geom(λn ). For t > 0, we
have that

P(G ≥ tn) = P(Exp(λ) ≥ t) as n→∞

poisson processes

A Poisson process makes the modeling of temporal-spacial events extremely
easy. Define a Poisson point process with rate λ > 0, or ppp(λ), as a collection
of randomly selected points P on the line I ∈ R, almost always [0,∞), where
the time-space average of points appearing is λ and the following conditions
are satisfied:

(a) For any r ∈ [0,∞), there exists at most 1 point

(b) For any subset J ⊆ I , |P ∩ J is a random variable Poi(λ|J |), where |P ∩ J |
is a measure of shared points between P and J , and |J | is simply the size
of J .

For instance, one might consider

J := [a, b]. Then |P ∩ J | ∼ Poi(λ(b − a))

(c) For disjoint subsets J1, J2, ..., Jn ⊆ I , we have that |P ∩ J1|, |P ∩ J2|, ..., |P ∩ Jn|
are mutually independent variables.To note, mutual inden-

dence implies that A1
is pairwise independent
with every other Ai , as
usual, but also indepen-
dent of any sets made up
of Ai ’s.

[ xx ( x x
J ⊆ I

x )x x

It is difficult to express the usefulness of Poisson point processes in theoretical
language, so let’s construct an example: we have a store in which, on average,
5 customers per hours buy something. We want to model the probability that
we have exactly 2 sales between the hours of 9-10am, 3 between 10 and 10:30
am, and 5 between 10:30 and 1pm. This situation can be modeled as ppp(5).

P(2 ∈ [9 − 10], 3 ∈ [10, 10.5], 5 ∈ [10.5, 13])

= P (|P ∩ [9, 10]| = 2, |P ∩ [10, 10.5]| = 3, |P ∩ [10.5, 13]| = 5)

= P(|P ∩ [9, 10]| = 2) · P(|P ∩ [10, 10.5]| = 3) · P(|P ∩ [10.5, 13]| = 5)

= P[Poi(5) = 2]P[Poi(
5
2

) = 3]P[Poi((2.5)3) = 5]

=
52(2.5)3(12.5)3e−5e−5e−12.5

2(3!)(5!)

If one orders points the points of a Poisson process, p1, p2, ..., with p1 < p2 < ...
on the interval [0,∞), a group of cdf and pdfs can be derived to characterize
the probability that, before or at time t, one sees a particular pn:
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4.7 Distribution of Points in a ppp
For a time t ∈ [0,∞) and pn in a point process ppp(λ), we have

P(pn ≤ t) = 1 −
n−1∑
i=0

(λt)ie−λt

i!
and P(pn = t) =

λntn−1e−λt

(n − 1)!

Relation to the Gamma Distribution

Define the Gamma function function Γ (r) : R+ → R+ =
∞∫
0
xr−1e−xdx. This

function is equivalent to (r − 1)! We say that a random variable X is Gamma
distributed with parameters r and λ, or X ∼ Gamma(r, λ), if

P(X = x) =
λrxr−1e−λx

Γ (r)
∀x > 0

One can see that the pdf of a point pr in a Poisson process with rate λ is
precisely Gamma(r, λ).
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V Transformations &c.
moment generating functions

For a random variable X, define its moment generating function M : R→ R+ as

MX(t) = E[etX]

Examples:

Bernoulli We’re flipping coins: M(t) = E[etX] =
∑

k={0,1}
etkP(X = k) = (1 − p) + et(p)

Expodential Recall f (x) = λe−λx. Then M(t) =
∞∫
0
etxλe−λxdx =

∞ if t ≥ λ
λ

λ−t if t < λ

Geometric Recall P(X = k) = (1 − p)k−1p. We have that M(t) =
∑
k≥1

etk(1 − p)k−1p =

pet
∑
k≥1

[et(1 − p)]k =

∞ if et(1 − p) ≥ 1
pet

1−(1−p)et if et(1 − p) < 1

You may be wondering why MX(t) is called a “moment generating” function:
by taking derivatives of M, one can actually extract the nth moments of X.
Consider the discrete case:

With SX := {s1, s2, ..., sn}, the moment generating function is given by M(t) =
n∑
i=1

etsiP(X = si). Differentiating, we get M ′(t) =
n∑
i=1

etsi siP(X = si), and can see

that M ′(0) is the mean! Differentiating once more yields M ′′(t) =
n∑
i=1

etsi s2
i P(X =

si) =⇒ M ′′(0) = E[X2], which is the second moment.

We can generalize to the following:

5.1 Deriving Moments from mgfs
Let MX(t) = E[etX]. When X is discrete or M(t) is finite close to 0, we
have that

M
(n)
X (0) = E[Xn]

Equal Distributions

Let X and Y be two random variables, not necessarily defined identically. We

say that X and Y are equal in distribution, denoted X
d= Y , if

P(X = B) = P(Y = B) for all subsets B ⊆ R

Though a proof won’t be provided, X and Y have the same cdf or pdf if and

only if X d= Y . However, even if MX(t) = MY (t), it may be that X
d
, Y .
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5.2 Inversion Theorem
Suppose X and Y are such that M(n)

X (0) = E[Xn] and M
(n)
Y (0) = E[Y n], i.e.

MX and MY are both finite about a neighborhood of 0. Then we have that

MX(t) = MY (t) =⇒ X
d= Y

Characteristic Functions

MX(t) = E[etX] may be modified slightly to yield the characteristic function of
X. Define ϕX(t) : R→ C = E[eitX] = M(it).

Decomposing, one writes E[eitX] = E[cos(tX) + i sin(tX)] = E[cos(tX)] +
iE[sin(tX)]. A significant advantage of ϕX(t) is that, for any variable X and
any value t, ϕ will always be bounded (see the trig substitution). If the nth

moment of X exists at all, we have ϕ
(n)
X (0) = inE[Xn]

functions of random variables

Suppose X ∼ Unif{−1, 0, 1, 2} and Y := X2. What is the distribution of Y ? We
can consider this question term-by-term:

P(Y = 4) = P(X2 = 4) = P(X ∈ {2,−2}) = P(X = 2) = 1
4

P(Y = 1) = P(X ∈ {−1, 1}) = 1
2

P(Y = 0) = P(X = 0) = 1
4

With 1
4 + 1

2 + 1
4 = 1, we have found all y ∈ SY := {0, 1, 4}. Thus, the pmf of Y is

ρY (y) =


1
4 y = 0
1
2 y = 1
1
4 y = 4

We can fomalize the definitions of SY and ρY (y) as follows:

SY := {y ∈ R : ∃x ∈ SX with g(x) = y} = {g(x) : x ∈ SX}, where Y = g(X)

ρY (y) = P(Y = y) = P(X = {x ∈ SX : g(x) = y}) =
∑

x∈SX s.t. g(x)=y

P(X = x)

5.3 Character of a Transformation
If X is discrete, any transformation Y = g(X) will also be discrete. If X is
continuous, however, Y = g(X) may continuous, discrete, or both.

Examples:

1. Let X ∼ Unif[−1, 1], a continuous random variable, and Y = g(X) = 1x≥0
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We then have that P(Y = 0) = P(X < 0) = 1
2 and P(Y = 1) = P(X ≥ 0) = 1

2 .
Thus, Y is a discrete variable with SY = {0, 1}.

Now suppose that Y = X2, with X defined as above. Then we have that

P(Y ≤ x) =

0 x < 0

1 x ≥ 1
since Y is non-negative. Further, P(Y ≤ x) =

P(X ∈ [−
√
x,
√
x]) =

√
x for x ∈ [0,1). We observe both a discrete and

continuous “character” for Y .

2. Let X ∼ [0, 1] and Y = − ln(1 − X). Then

P(Y ≤ t) = P(−ln(1 − X) ≤ t) = P(ln(1 − X) ≥ −t)

= P(1 − X ≥ e−t) = P(X ≥ 1 − e−t)

=⇒ Y ∼ Exp(1)

One can also conclude that Y = − 1
λ ln(1 − X), where X ∼ Unif[0,1], is

Exp(λ). Generally speaking, one can extract any distribution one likes
from a uniform random variable (or really any continuous variable).

Affine Transformations

Let X have a pdf/pmf fX(x), and let Y := aX + b, where a and b are real-
valued. One calls this an “affine transformation” (not just in probability!).

Let a > 0. Then P(Y ≤ x) = P(aX + b ≤ x) = P
(
X ≤ x−b

a

)
. Thus, fY (x) =

F′X
(
x−b
a

)
= 1

a fX
(
x−b
a

)
. Similarly, when a < 0, we have that fY (x) = −1

a fX
(
x−b
a

)
.

Generalizing, one yields

5.4 Distribution of an Affine Transformation
fY (x) = 1

|a| fX
(
x−b
a

)
, where X is a random variable and Y := aX + b.

One can thus show that, for X ∼ N (0, 1), Y = σX + µ is N (µ, σ2), and further
that aY + b is N [aµ + b, (aσ )2]

The following is applicable to a much broader set of transformations:

5.5 General pdf of a Transformation
Let X be a random variable with density function fX . Let Y = g(X), with
g differentiable everywhere and the set of points {x : g ′(x) = 0} finite. We
then have that

fY (y) =
∑ fX(x)
|g ′(x)|

, summing over all {x : g(x) = y with g ′(x) , 0}
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For example, let Y = (X − 1)2. Then fY (y) =
∑

x=1±√y

fX (x)
|g ′(x)| =

fX(1 +
√
y)

|g ′(1 +
√
y)|

+
fX(1 − √y)

|g ′(1 − √y)|
=

fX(1 +
√
y) + fX(1 − √y)

2
√
y
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VI Multivariate Distributions
random vectors

Discrete Case

Consider a vector X⃗ := (X1, X2, ..., Xn), where Xi are all random variables. We
can think of X⃗ as a random variable itself, with X⃗ : Ω→ Rn. If we want to
describe the probability of that particular vector takes on particular values
(x1, ..., x2), we call the appropriate function a joint density function.

If (Ω, F ,P) is a probability space and X1, ..., Xn : Ω→ R are discrete random
variables, then the joint pmf is

ρX1,...,Xn
(x1, ..., xn) = P(X1 = x1, ..., Xn = xn)

As with the univariate case, the probability of all events must sum to 1:∑
x∈SX

ρX1,...,Xn
(x) with SX := [SX1

] × ... × [SXn
]

Note that [SX1
]× ...× [SXn

] may be larger than the possible values for X⃗, x ∈ SX⃗ ,
for which P(X⃗ = x) > 0. In this sense, the expression above is also true when
summing over x ∈ SX⃗ .

Suppose X1, ..., Xn are random variables and g : Rn → R is a function which
does not “blow up” at any input (such that the expression below will make
sense). We have that the expectation

E [g(X1, ..., Xn)] =
∑

(x1,...,xn)∈SX

g(x1, ..., xn)ρ(x1, ..., xn) with SX defined as above

Suppose we want to single out the probability of a particular coordinateOne sees that when g is
the identity function, we
get a plain expectation
E[(X1, ..., Xn)]

Xi ∈ X⃗. The probability that Xi = k can be derived from our joint pmf,
where one sums over all possible values of Xj except Xi . Define the marginal
probability function:

ρXi
(k) =

∑
(x1,...,xi−1,k,xi+1,...,xn)∈SX

ρ(x1, ..., xi−1, k, xi+1, ..., xn)

One can similarly “single out” a whole range of coordinates within X⃗, say
(x1, ..., xm) where m < n, by fixing these values in a summation of ρ across SX .

Multinomial Distribution

Suppose we are rolling an r-sided die, where the probability that one rolls side
i is pi , with 0 ≤ pi ≤ 1. Thus, we require that p1 + ... + pr = 1. Let Xi denote



27 multivariate distributions

the number of i-side rolls one sees in a series of n rolls. We have that

P(X1 = k1, ..., Xn = kn) =
(

n
k1, ..., kr

)
pk1

1 ...pkrr

where
( n
k1,...,kr

)
, the “multinomial” term, is defined to be n!

k1!...kr !
.

In generality, if we are counting instances of r events in n trials such that
p1 + ... + pr = 1 and the “tallies” X1 = k1, ..., Xr = kr sum to n, we have

(X1, ..., Xr ) ∼ Mult(n, r, p1, ..., pr )

with the distribution defined above. Note that the binomial distribution is
a particular case of the multinomial distribution with r = 2, p1 = p, and
p2 = 1 − p.

Continuous Case

As before, let X1, ..., Xn be random variables (continous this time). We say that
a function f : Rn → R+ is a joint density of (X1, ..., Xn) if, for all B ⊆ Rn

P ((x1, x2, ..., xn ∈ B)) =

n times∫
B

∫
B

...

∫
B

f (x1, x2, ..., xn) dx1...dxn

Note that, if f is a valid density, we require that
∫
R

∫
R
...

∫
R
f (x1, x2, ..., xn) = 1

As we did in the discrete case, we can “single out” a coordinate in X⃗, and write

fXi
(x) =

n−1 times∫
R

...

∫
R

f (x1, ..., xi−1, x, xi+1, ..., xn)

This, too, is called the marginal density function.

When working with continuous variables, one should be careful to ensure that
a density function even exists for a set of random variables. This is not always
the case. As an example, suppose X = Y . See that P(X = Y ) = 1. But then we
have

1 =
∫ ∫
{x=y}

f (x, y)dxdy =
∫
R

x∫
x

f (x, y) = 0  

Generally, and informally, if P(X, Y ∈ A) = 1 for some subset A, where the
“area” or “measure” of A = 0, then no joint density exists. For the above
example, see that P((X, Y ) ∈ y = x) = 1, where x = y describes a line of
inherent area 0. Conversely, if X, Y do have a joint density, then P((X, Y ) ∈
A) = 0 if A has area 0. In one final arrangement of words, if P((X, Y ) ∈ A) > 0,
then the area of A > 0.
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independence

Suppose variables X1, ..., Xn, continuous or discrete, are defined on a common
space (probability space). Their joint cdf is given by

F(x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn)

as usual. Also as usual, the joint cdf always determines the distribution of
X1, ..., Xn.

6.1 Determining Multivariate Independence
X1, ..., Xn are independent iff

F(x1, ..., xn) = F(x1)...F(xn)

Furthermore, for continuous variables,

f (x1, ..., xn) = fX1
(x1)...fXn

(xn)

implies independence. If X1, ..., Xn are already known to be independent,
then their joint density always exists, and can be derived using the
univariate densities as above.

For discrete variables X1, ..., Xn with pmfs ρXi
, X1, ..., Xn are independent

iff
ρ(k1, ..., kn) = ρX1

(k1)...ρXn
(kn)

Examples:

1. We’ll consider our dart board example again, where D := B(0, r0) = {x, y :
x2 + y2 ≤ r0}. Define Leb(A) for some A ⊆ Rn to be the nth-dimensional
volume of A. Then P[(X, Y ) ∈ A] = Leb(A)

πr2
0

. Since we can write
∫ ∫
D
1(x,y)∈A =

Leb(A), we find that the pdf of (X, Y ) is f (x, y) = 1
πr2

0
1(x,y)∈A.

To calculate the marginal densities fX and fY , we have

b∫
a

fX =
∫ ∫
D

1

πr2
0

1X∈[a,b] =

b∫
a

√
r2

0−x2∫
−
√
r2

0−x2

1

πr2
0

=

b∫
a

2
√
r2
0 − x2

πr2
0

=⇒ fX =
2
√
r2
0 − x2

πr2
0

Similarly, we find that fy = 2
√
r2

0−y2

πr2
0

. Notice that fXfY , fX,Y .

2. Let (Xi , i ≥ 1) be a sequence of iid random variables, Xi ∼ Unif{1, ..., 6}.”Independent and identi-
cally distributed” Define the variables S = X1 + X2 and I = 1X1=1. One variable gives

information on the sum of X1 and X2, and the other about whether or
not X1 was rolled a 1. It may be intuitive to think that these variables
are independent of eachother, but see that P(S = 12, I = 1) = 0 while
P(S = 12)P(I = 1) = 1

36
1
6 . We conclude that S and I are not independent.
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With the same setup, define N := min(k : Xk + Xk+1 ∈ {2,6}), i.e. the
first pair of adjacent rolls that sum to either 2 or 6. The probability that
Xi + Xi+1 ∈ {2,6} is 1

6 (for 2, this is 1/36, and for 6, this is 5/36). Thus,
N ∼ Geom(1

6 ).

Now consider Y = SN , i.e. the first sum for which Xk + Xk+1 ∈ {2,6}
holds. Then P(Y = 2) or P(Y = 6). We’ll look at the first case only, since
the second follows similarly:

P(Y = 2, N = k) =
∑
k≥1

P(Y = 2, N = k) =
∑
k≥1

(5
6

)k−1 1
36

=⇒ P(Y = 2) =
1
6

We deduce, then, that P(Y = 2, N = k) = P(Y = 2)P(N = k), and similarly
for 6. Thus, N and Y are independent.

Though a proof won’t be provided, we have generally that, for iid variables
(Zn, n ≥ 1) where ∃B ⊆ R : P(Zi ∈ B) > 0, the variables N := min(i : Zi ∈ B)
and Y = ZN are independent.

change of variables in multivariate setting

Suppose random variables (X, Y ) have a joint density fX,Y . Consider the set
K ∈ R2 such that f = 0 outside K , and let L ∈ R2 be arbitrary. Define a bijection
G : K → L : (X, Y ) → (g(X, Y ), h(X, Y )), with g(X, Y ) = U and h(X, Y ) = V .
Since G is a bijection, we also have G−1 : L→ K : (U, V )→ (p(U, V ), q(U, V )).

We are looking for the distribution fU,V , ultimately, and now see that L ∈ R2

is the set for which fU,V = 0 outside of it.

6.2 pdf with a Change of Variables

If the partial derivatives contained in the Jacobian


∂p
∂u

∂p
∂v

∂q
∂u

∂q
∂v

 exist and are

continuous on L, and det(Jac(u, v)) , 0 for any u, v ∈ L, then (U, V ) has a
joint density which is given by

fU,V (u, v) = f (p(u, v), q(u, v)) · |det(Jac(u, v))|

where X → U , Y → V , and fX,Y is the joint distribution of X and Y .

Let’s return to a dart board of radius 1 to demonstrate a reasonable change
of variables. Let (X, Y ) ∼ Unif(D). If (R, θ) represent a polarized version of
these coordinates, with (R, θ) ∼ Unif(D), we can find FR,θ without too much
trouble. Let u, v be the variables for R and θ, respectively. Then

FR,θ(u, v) = P(R ≤ u, θ ≤ v) =
uv2

2π
=⇒ fR,θ =

∂2

∂u∂v
uv2

2π
=

u
π
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since we are now measuring the v-degree “slice” of a circle with radius u. The
marginal densities are then found by integrating over the opposite variable:

fR(u) =

2π∫
0

u
π

= 2u and fθ(v) =

1∫
0

u
π

=
1

2π

This solution is perfectly valid, and is done from first principles. Using a
change of variables, however, we can consider more complicated setups. As-
sume, instead of (X, Y ) ∼ Unif(D), we have X, Y ∼ N (0, 1) both independent
normal.

To satisfy the conditions of our theorem, we’ll consider (X, Y ) ∈ R2 \ {0}. ThenThis shouldn’t change any
statements about the dis-
tribution.

let G : (X, Y ) → (R, θ). We are concerned with p, q : (u, v) → (x, y), where
u, v are the parameters of R, θ, respectively, i.e. the functions that invert our
transformation. This is easy, though, as y = u sin(v) and x = u cos(v).

Without performing the calculations here, we see that det(Jac(u, v)) = u, which
is positive everywhere (we removed the case where R = 0). Thus, one can write
fR,θ = f (p(u, v), q(u, v))u. Remember that X, Y were independent normals, so

fX,Y = fXfY = ϕ(x)ϕ(y) = 1
2π e

−(x2+y2)
2 , and we write

fR,θ =
1

2π
exp

[
−u2(cos2(v) + sin2(v))

2

]
u =

1
2π

e
−u2

2 u =⇒ fR = e
−u2

2 , fθ =
1

2π
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VII Sums & Exchangeability
We’ve discussed univariate and multivariate densities, their relationship with
one another via independence and marginal density functions, and the den-
sities of some particular well-behaved transformations. Here, we’ll consider
sums of variables and some important symmetries one can take advantage of
in problem-solving.

sums of variables

Let X, Y be independent continuous variables with densities fX and fY . Then,
the density of X + Y is given by

fX+Y = fX ∗ fY =
∫
R

fX(x)fY (z − x)dx

We call fX ∗ fY the “convolution” of fX and fY .

7.1 Density of Summed Normals
Let X ∼ N (µ1, σ

2
1 ), Y ∼ N (µ2, σ

2
2 ). Then the variable X + Y ∼ N (µ1 +

µ2, σ
2
1 + σ2

2 ). In fact, for any string of independent normals Xi with mean
µi and variance σ2

i , then

n∑
i=1

aiXi ∼ N (a1µ1 + ... + anµn, a
2
1σ

2
1 + ... + a2

nσ
2
n ) where ai all constants

Example:

1. Let X ∼ Exp(λ) and Y ∼ Exp(λ) be independent. Then

fX+Y (z) =
∫
R

fX(x)fY (z − x)dx =
∫
R

λe−λxλe−λ(z−x)dx = λze−λz

We conclude that X + Y ∼ Gamma(z, λ).

2. Recall that a variable X ∼ Gamma(a, λ) if fX = λaxa−1e−λx

Γ (a) 1x≥0. One can
show, for two independent X ∼ Gamma(a, λ), Y ∼ Gamma(b, λ), the
sum X + Y ∼ Gamma(a + b, λ). This exercise requires the

change of variables x = tz.
3. Let X, Y be iid Unif[0, 1]. Then

fX+Y =
∫
R

fX(x)fY (z − x) =

1∫
0

dx for z ∈ [0, 1] and

1∫
z−1

dx if z ∈ [1, 2]

and 0 elsewhere
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exchangeability

We’ve previously defined what it means for two variables to be identically
distributed. The multivariate case is similar. We say two sequences (X1, ..., Xn)Or “equal in distribution.”

and (Y1, ..., Yn) are identically distributed, and write (X1, ..., Xn) d= (Y1, ..., Yn), if

P[(X1, ..., Xn) ∈ B] = P[(Y1, ..., Yn) ∈ B] ∀B ⊆ Rn

This is identical to saying FX1,...,Xn
(k1, ..., kn) = FY1,...,Yn

(k1, ..., kn) ∀ki ∈ R.

We then say that a sequence (X1, ..., Xn) is exchangeable iff, for any permu-

tation (σ (1), ..., σ (n)), we have (X1, ..., Xn) d= (Xσ (1), ..., Xσ (n)). We have a few
equivalent conditions for this

1. FX1,...,Xn
is a symmetric function iff exch.

2. For continuous variables, fX1,...,Xn
is symmetric, iff exch.

3. For discrete variables, ρX1,...,Xn
is symmetric iff exch.

4. If X1, ..., Xn are iid, then (X1, ..., Xn) are exchangeable. If they are ex-
changeable, they are identically distributed, but may not be independent.

Proof of (1). Suppose that F(x1, ..., xn), the joint cdf of X1, ..., Xn, is a symmetric func-
tion, i.e. F(x1, ..., xn) = F(xσ−1(1), ..., xσ−1(n)). We use σ−1 instead of σ for
purely notational reasons. Then

FX1,...,Xn
(xσ−1(1), ..., xσ−1(n)) = FXσ (1),...,Xσ (n)

(x1, ..., xn)

and we conclude that (X1, ..., Xn) d= (Xσ (1), ..., Xσ (n)).

Now let (X1, ..., Xn) d= (Xσ (1), ..., Xσ (n)). Then we have

F(x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn)

= P(Xσ (1) ≤ x1, ..., Xσ (n) ≤ xn) = P(X1 ≤ xσ−1(1), ..., Xn ≤ xσ−1(n))

= F(xσ−1(1), ..., xσ−1(n)) =⇒ F symmetric

Proof of (4). Let X1, ..., Xn be iid, and fix x1, ..., xn. Then

FX1,...,Xn
(x1, ..., xn) = FX1

(x1)...FXn
(xn) by independence

= FX1
(x1)...FX1

(xn) = FXσ (1)
(x1)...FXσ (n)

(xn) by ID dist.

= FXσ (1),...,Xσ (n)
(x1, .., xn) =⇒ (X1, ..., Xn) exchangeable
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Now let (X1, ...., Xn) be exchangeable. Then

P(X1 ≤ x1) = P
[
(X1, ..., Xn) ∈ (−∞, x] × Rn−1

]
= P

[
(Xi , X1, ..., Xi−1, Xi+1, ..., Xn) ∈ (∞, x] × Rn−1

]
= P(Xi ≤ x) ∀i ∈ [n]

For a given sequence X1, ..., Xn, our notions of exchangeability extend to
subsets, X1, ..., Xk and Xi1 , ..., Xik . In detail, we have that if X1, ..., Xn are ex-
changeable, then: The proof for this is simi-

lar to those previous.

∀ distinct 1 ≤ k ≤ n and i1, ..., ik ∈ [1, n], (Xi1 , ..., Xik )
d= (X1, ..., Xk)

Example:

1. Let X1, X2, X3 be iid ∼ Unif[0,1]. We are interested in the probability
that X1 = max(X1, X2, X3). Normally, one would cook up an equation
for the joint pdf fX1,X2,X3

and integrate over certain bounds, but we
can use exchangeability! Since X1, X2, X3 are iid, they are exchangeable,
and thus P(X1 = max(X1, X2, X3) = P(X2 = max(X1, X2, X3)) = P(X3 =
max(X1, X2, X3)). Since one of these variables must be the maximum,
and since we can remove the point-cases where Xi = Xj by continuity,
P(X1 = max(X1, X2, X3)) = 1

3 .

2. Suppose we sample without replacement 1 ≤ k ≤ n times from a pool
of n choices. Then, (X1, ..., Xn) are exchangeable. The proof for this is as
much as writing down the joint pmf and seeing that it is symmetric.

One final, unsurprising, result about exchangeability is that, for X1, ..., Xn

exchangeable and g : R→ R with g(Xi) = Yi , Y1, ..., Yn are also exchangeable.

Proof.Fix B ⊆ Rn and define g−1(B) = {(z1, ..., zn) ∈ Rn : ⟨g(z1), ..., g(zn)⟩ ∈ B}.
Then we have (Y1, ..., Yn) ∈ B ⇐⇒ (X1, ..., Xn) ∈ g−1(B), so

P[(Y1, ..., Yn) ∈ B] = P[(X1, ..., Xn) ∈ g−1(B)] = P[(Xσ (1), ..., Xσ (n)) ∈ g−1(B)]

= P
[
g
(
Xσ (1)

)
, ..., g

(
Xσ (n)

)
∈ B

]
= P[(Yσ (1), ..., Yσ (n)) ∈ B] =⇒ Y1, ..., Yn exchangeable
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VIII Multivariate Expectation and
Variance

expectation

Previously, we’ve seen that, if X and Y are random variables defined on a
common space, with E|X | < ∞ and E|Y | < ∞, then E[X + Y ] = EX + EY . This
generalizes for n variables:

8.1 Linearity of Expectation
Let X1, ..., Xn : Ω→ R such that E|Xi | < ∞. Then

E[X1 + ... + Xn] = EX1 + ... + EXn

Proof. By induction: we have E[X1 + ...+ Xn+1] = E[X1 + ...+ Xn] +EXn+1, so long
as |X1 + ... + Xn| < ∞, but this can be verified using the triangle inequality,

i.e. |X1 + ...+Xn| ≤ X1 + ...+Xn < ∞. Then E[X1 + ...+Xn]+EXn+1 =
n+1∑
i=1

EXi ,

and we are done.

An immediate corollary of linearity is that, for functions gi : R → R with

E[gi(Xi)] < ∞, we have E[g1(Xi) + ... + gn(Xn)] =
n∑
i=1

E[gi(Xi)].

Indicator Method

Suppose X is an positive, integer-valued discrete variable, such as the sum of

coin tosses. We can always write X =
n∑
i=1

1Ei
for events E1, ..., En.

By multivariate linearity, then, we can write EX =
n∑
i=1

E[1Ei
] =

n∑
i=1

P(Ei). We

call this the indicator method for calculating expectation.

Example: Consider a “head run” in a series of coin tosses, i.e. a finite sequence
in our flips where one only sees heads. Let X = {# of length-5 head runs in 100 tosses}.
We can write this the sum of indicators which look for length-5 head runs. If
we notate each flip fi ∼ Ber(1/2) for i ∈ [100], one writes

X =

 95∑
i=2

1{fi−1=0,fi=1,...,fi+4=1,fi+5=0}

 + 1{f1=1,...,f5=1,f6=0} + 1{f95=0,f96=1,...,f100=1}

By exchangeability, this is 95P(fi = 1, ..., fi+5 = 1) + 1
26 + 1

26 = 95
27 + 2

26 = 98
27 .
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Expectation of Products

There isn’t a general form for E[XY ] in absolute terms, but we can consider
some special cases to get a gist:

1. Let X ∼ N (0, 1) and R :=

1 p = 1/2

−1 p = 1/2
, with X and R independent from

eachother. One intuitively concludes that E[XR] must be 1/2EX − 1/2EX =
0, which is indeed EXER.

2. If we let R ∼ Ber(1/2) and X defined as above, this expectation becomes
1/2EX, which is EREX, again.

3. Now for an example with actual justification: let X = Y , where the dis-
tributions of X and Y remain unknown. E[XY ] = E[X2]. Also, EXEY =
(EX)2, so E[XY ] = E[X]E[Y ] only when Var(X) = 0, i.e. X is degenerate.

With the gist gotten, we’ll make the following unsurprising claim:

8.2 Expectation of Independent Products
If X and Y are independent random variables such that E|X | < ∞ and
E|Y | < ∞, then E[XY ] = EXEY . In fact, for any sequence of (finite
expectation) variables X1, ..., Xn, we have

E[X1 · ... · Xn] =
n∏
i=1

EXi

Proof.Let X, Y have densities fX , fY , respectively. Then

E[XY ] =
∫∫
R

xyfX,Y dydx =
∫∫
R

xfXyfY dydx =
∫
R

xfX

∫
R

yfY = EXEY

Similarly, if X and Y are discrete, then one writes

E[XY ] =
∑
x∈SX

∑
y∈SY

xyρX,Y =
∑
x∈SX

∑
y∈SY

xyρXρY =
∑
x∈SX

xρX
∑
y∈SY

yρY = EXEY

One can also define gi : R→ R, and, where all expectations of gi(Xi) are finite,
and we’ll have E[g1(X1) · ... · gn(Xn)] = E[g1(X1)] · ... · E[gn(Xn)]. The proof for
this is a mostly trivial induction.

A similar statement holds for independent {Xi , i ∈ [n]}, where E[X2
i ] < ∞,

though a proof won’t be provided:
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8.3 Variance of Independent Sums
For X1, ..., Xn as described above, we have

Var(X1 + ... + Xn) =
n∑
i=1

Var(Xi)

Example: Define X ∼ NegBin(k, p), the negative binomial distribution, which
describes the time one waits until they see a sum k of Bin(p) events. X is theni.e. time until one sees k

heads, where probability
on flips heads is p

the sum of times between each successful flip. If we denote these times Ti
for the ith success, then X = T1 + (T2 − T1) + (T3 − T2) + ... + (Tk − Tk−1). Note
that one can write T1 = T1 − T0, where T0 is the 0th flip. Also note, since the
flips are iid variables, they are exchangeable, so Ti − Ti−1 are all distributed
as T1 − T0 = T1, which is a Geom(p) variable.

Thus, X = kG, where G ∼ Geom(p). By linearity of expectation and our
variance theorem above, we conclude

EX = E[kG] = kE[G] =
k
p

and Var(X) = Var(kG) = kVar(G) =
k(1 − p)

p2

Moment Generating Function for Sums

Recall from Part V the moment generating function of a variable X: MX(t) =
E[etX]. We’ll show the following using the facts we’ve established about ex-
pectation:

8.4 MGF of Independent Sums
If X, Y are independent with mgfs MX(t) and MY (t), respectively, then
MX+Y (t) = MX(t)MY (t), and, in fact

MX1+...+Xn
(t) =

n∏
i=1

MXi
(t) with Xi all independent

Proof. We have that MX+Y (t) = E[et(X+Y )] = E[etXetY ]. With g1(X) = etX and
g2(Y ) = etY , and using the expectation of independent products:

E
[
etXetY

]
= E

[
etX

]
E
[
etY

]
= MX(t)MY (t)

A generalization to n elements can be shown in much the same spirit as
previous inductions over expectation.

sample mean and variance

Given iid random variables X1, ..., Xn, define the sample mean, denoted, Sn, to
be 1

n (X1 + ... + Xn). For any given Xi , we have E[Sn] = E[Xi].

Proof.
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E[Sn] = E
[

1
n (X1 + ... + Xn)

]
= 1

nE[X1 + ... + Xn] = 1
nE[nXi] = E[Xi]

Furthermore, Var(Sn) = 1
nVar(Xi) for any Xi . Recall that Var(aX) = a2Var(X).

Proof.
Var(Sn) = Var

(
1
n

n∑
i=1

Xi

)
= 1

n2 Var
(

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

Var(Xi) = 1
nVar(Xi)

Now define the sample variance of iid X1, ..., Xn as Vn := 1
n−1

n∑
i=1

(Xi − Sn)2. We

have that E[Vn] = Var(Xi). Denote µ = EXi .

Proof.

E
[
(Xi − Sn)2

]
= E

[
(Xi − µ + µ − Sn)2

]
= E[(Xi − µ)2]︸        ︷︷        ︸

=Var(Xi )

+2E
[
(Xi − µ)(µ − Sn)

]
+ E[(Sn − µ)2]︸        ︷︷        ︸

=Var(Sn)= Var(Xi )
n

=
n + 1
n

Var(Xi) − 2E
[
(Xi − µ)(Sn − µ)

]
=⇒

n∑
i=1

E
[
(Xi − Sn)2

]
= (n + 1)Var(Xi) − 2

n∑
i=1

E
[
(Xi − µ)(Sn − µ)

]

= (n + 1)Var(Xi) − 2E

 n∑
i=1

n(Sn − µ)2


= (n + 1)Var(Xi) − 2nVar(Sn)

= (n + 1)Var(Xi) − 2Var(Xi) = (n − 1)Var(Xi)

=⇒ Vn = Var(Xi)

Note that
n∑
i=1

Xi − µ =

X1 + ... + Xn − nµ =
nSn − nµ = n(Sn − µ)

covariance and correlation

Let X, Y be random variables defined on a common space. We define the
covariance of X and Y , Cov(X, Y ), to be E [(X − EX)(Y − EY )].

One can rearrange to yield an alternative formula, Cov(X, Y ) = E[XY ]−EXEY .
We also have Cov(X + a, Y + b) = Cov(X, Y ) and Cov(cX, dY ) = cdCov(X, Y ),
which thus means that covariance is not normalized. Both these results follow
directly from the definition.

Now define the correlation of X, Y to be

Corr(X, Y ) = Cov
(
X − EX
√

VarX
,
Y − EY
√

VarY

)
= Cov(X, Y ) · 1

√
VarXVarY
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This quantity is simply a normalization of covariance, and takes values be-
tween -1 and 1 when expectations are finite and Var ∈ (0,∞) for both X and
Y . There is actually a good deal to prove in that statement, though.

One says that two variables are positively, negatively, or un- correlated if their
covariance is positive, negative, or 0, respectively (this implies Corr is +/-/0
as well).

Example: We’ll consider sampling without replacement from a bin of n
balls, A of which are yellow. Define the variables X = 1ith sample yellow and
Y = 1jth sample yellow By exchangeability, we can let i = 1 and j = 2 (this follows

from the example on p. 35). Then E[XY ] = P(first 2 samples yellow) = A
n (A−1

n−1 ).

Similarly, EX = A
n and EY = A

n . We conclude Cov(X, Y ) = A(A−1)
n(n−1) −

A2

n2 < 0, so
X and Y are negatively correlated.

There are a few ways of interpreting this result: one sees that X negatively
influences the outcome of Y , i.e. the probability of Y decreases as X occurs,
since X “takes away” a sample that may lead to the success of Y . If, on X
occurring, X “puts back” its yellow ball, this effect is negated, one expects
correlation to be 0, and this is verified when conceptualizing our new setup as
sampling with replacement (if X and Y are independent, they would have no
correlation–this stems directly from the definition of covariance.)

Generally speaking, if [X lying above its mean =⇒ Y lies below its], then
they are negatively correlated. If [X lying above its mean =⇒ Y also lies
above it], then they are positively correlated (helping eachother out, per se).
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IX More Limit Theorems and
Approximations

Some Inequalities

For a random variable X and t ∈ R > 0, we have

P (|X | ≥ t) ≤ EX
t

this is called Markov’s Inequality. It’s actually quite straightforward to prove:

Proof.E|X | ≥ E
[
|X |1|X |≥t

]
≥ E

[
t1|X |≥t

]
= tE

[
1|X |≥t

]
= tP(|X | ≥ t)

We also have Chebyshev’s Inequality, which states for a random variable X,
t ∈ R > 0, and/or an independent sum Sn = X1 + ... + Xn:

P (|X − EX | ≥ t) ≤ Var(X)
t2 and P (|S − ES | ≥ t) ≤

n∑
k=1

Var(Xk)
1
t2

laws of large numbers

For a sequence of random variables (Sn, 1 ≤ n ≤ ∞), we say that Sn converges

in probability to S∞, and write Sn
P→ S∞, if

∀ ε > 0 lim
n→∞

P (|Sn − S∞| > ε) = 0

As an example, if we consider Sn ∼ Ber(1/n), then Sn
P→ 0. One sees that

P(|Sn − 0| > ε) = P(Sn = 1)→ 0 as n→∞.

9.1 Weak Law of Large Numbers
Let (Xn, n ≥ 1) be a sequence of independent random variables, with
E(X2

n) < ∞ always. Let Sn := X1 + ... + Xn. Then

Sn − EXn

n
P→ 0

Proof.By Chebyshev, we know that

P(|Sn − EXn| ≥ t) ≤ Var(Sn)
t2 =

∑
n≥1

Var(Xi)
1
t2 ≤

cn

t2

where the last step follows from the fact that Var(Xi) = E[X2
i ] − (EX)2 ≤

c − (EX)2 ≤ c. Since E[X2
i ] is finite, we choose c ∈ R arbitrarily.
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We need to show P(|Sn − EXn| > εn) → 0, but this is easy now, since
P(|Sn − EXn| > εn) ≤ cn

(εn)2 = c
ε2n , which clearly goes to 0 for any fixed ε, c.

P(|Sn − EXn| > εn)→ 0 =⇒ lim
n→∞

P
(
|Sn − EXn|

n
− 0 > ε

)
= 0

Once again for random variables (Sn, n ≥ 1), we say that Sn converges almost
surly to S∞, and write Sn

a.s.→ S∞, if

∀ε > 0 ∃N : P (∀n ≥ N |Sn − S∞| < ε) = 1

or, equivalently, if P(limn→∞ Xn = X∞) = 1.

Example: These symbols provide little intuition, so here is some food for
thought: suppose we roll a die many, many times, and record a variable
Si , being the average of rolls thus far. After 1000 rolls, we may see a value
S1000 = 3.573. We let S∞ = 3.5 exactly, since this is the expectation of a roll.
Sn will get close to S∞ over time, so Sn converges in probability to S∞.

Now suppose one rolls this same die many, many times, but stops after rolling
100 6’s in a row. Here, our random variables are simply the number rolled. It’s
not so useful to think of these variables approaching any number, because they
don’t. However, we do know that, at some point (say, the N th roll), 100 6’s will
be rolled, and thus all Xi for i ≥ N will be 0. In this sense, Xi are almost surely
going to 0. Note that, in any finite setting, there is always positive probability
that 100 6’s haven’t been rolled yet.

It is a fact that a.s. convergence implies convergence in probability, but not
the other way around, so it is the stronger condition.

As a concrete example, consider the independent sequence Sn ∼ Ber( 1
n ). We’ve

shown above that this converges in probability to 0. Fix any N . We want to
consider P(∀n ≥ N |Sn| < ε). This probability is less than P(∀n ∈ [N, Ñ ] |Sn| <
ε). By independence, this is

Ñ∏
n=N

P(Sn < ε) =
Ñ∏

n=N

P(Sn = 0) =
Ñ∏

n=N

(1 − 1
n

) =
Ñ∏

n=N

(
n − 1
n

) =
N − 1
Ñ

This is clearly less than 1, and we are done.

Borel-Cantelli Lemma:
if Xn are independent,∑
n≥1

P(Xn) < ∞ =⇒

P(Xn occurs∞ often) = 0.
If

∑
n≥1

P(Xn) = ∞, then

this probability is 1. This
is unexaminable, but is
an easier way of showing
that Ber(1/n) a.s.↛ 0, and
further that Ber(1/n2) does
converge almost surly to 0

9.2 Strong Law of Large Numbers
Let (Xn, n ≥ 1) be iid with EXi = 0. Let Sn := X1 + ... + Xn. Then Sn

n
a.s.→ 0

The proof for this is significantly more involved than that of the weak law,
and in doable fashion requires the assumption that E[X4

i ] is finite.
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9.3 Central Limit Theorem
Let −∞ < a < b < ∞ and X1, ..., Xn be iid random variables with finite
mean µ and variance σ2. Let Sn = X1 + ... + Xn. Then we have

P
(
Sn − nµ
σ
√
n
∈ [a, b]

)
→

b∫
a

ϕ(x) =

b∫
a

1
√

2π
e
−x2

2 dx = Φ(b) − Φ(a)
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X Conditional Distributions
discrete setting

Given a discrete random variable X and an event E with P(E) > 0, we define
the conditional probability mass function

ρX |E(x) = P(X = x|E) =
P(X = x, E)

P(E)

This is indeed a pmf, since∑
x∈SX

ρX |E =
∑
x∈Sx

P(X = x, E)
P(E)

=
1

P(E)
P(x ∈ SX , E) =

P(E)
P(E)

= 1

We similarly define the conditional expectation of X, given E, as E[X |E] =∑
x∈SX

xρX |E(x) =
∑

x∈SX
xP(X = x | E).

Generally speaking, if E1, ..., En partition Ω, then we have the following:

ρX(x) =
n∑
i=1

ρX |Ei
(x)P(Ei), and thus EX =

∑
x∈SX

xρX =
∑

x∈SX
x

n∑
i=1

ρX |Ei
(x)P(Ei).

Similarly, EX = E[X |E]P(E) + E[X |Ec]P(Ec)

Examples:

1. Suppose we model the number of customers who are in a store at a
given moment, and call this variable X. If it’s raining outside, the event
R occurs, and if not, Rc does. The distribution of X is Poi(λ) when it’s
raining, and Poi(µ) when not.

EX = E[X |R]P(R) + E[X |Rc]P(Rc) = λP(R) + µ(1 − P(R)).

2. Let (Xi , i ≥ 1) be iid Ber(p) variables, and N = min(i : Xi = 1). Then
N ∼ Geom(p). It’s expectation we know to be 1

p , but we’ll derive it with
conditional expectations:

EN = E[N |X1 = 0](1 − p) + E[N |X1 = 1]p = E[N + 1](1 − p) + p =
(1 − p)(EN + 1) + p =⇒ EN = 1/p

If X, Y are discrete, then for x ∈ SX and y ∈ SY , we write ρX |Y (x|y) = P(X =
x | Y = y). If X, Y are independent, then ρX |Y (x|y) = ρX(x).

3. With that in mind, consider X ∼ Poi(λ), Y ∼ Poi(µ), independent pois-
sons, and Z = X + Y . One can show that Z ∼ Poi(λ + µ) (this is a
good exercise for material from much earlier). We are interested in
ρX |Z(k|l) = P(X = k|Z = l):



43 conditional distributions

P(X = k|Z = l) =
P(X = k, Z = l)

P(Z = l)
=

P(X = k, X + Y = l)
P(Z = l)

=
P(X = k, Y = l − k)

P(Z = l)
=

λke−λ

k!
µl−ke−µ

(l − k)!

(
(λ + µ)le−λ−µ

l!

)−1

=
λkµl−k l!

k!(l − k)!(λ + µ)l
=

(
l
k

) (
λ
µ

)k ( µ

λ + µ

)l
=

(
l
k

) (
λ

µ + λ

)k ( µ

λ + µ

)l−k
=⇒ ρX |Z(k|l) ∼ Bin

(
l,

λ
λ + µ

)

Poisson Marking

Let P ∼ Poi(λ) represent the number of customers who enter a store in some
fixed time interval. Suppose each person receives, independently, a coupon
of type 1, 2, or 3 with probability p1, p2, p3, respectively. What is the joint
density of X1, X2, X3, the number of people who receive coupons of type i in
the time interval?

If we fix P = k, this question becomes much easier, and we conclude that
P(X1 = k1, X2 = k2, X3 = k3 | P = k) =

( k
k1,k2,k3

)
pk1

1 pk2
2 pk3

3

ρ(k1, k2, k3) = P(X1 = k1, X2 = k2, X3 = k3 | P = k)P(P = k)

=
(

k
k1, k2, k3

)
pk1

1 pk2
2 pk3

3
λke−λ

k!
=

(λp1)k1e−λp1

k1!
(λp2)k2e−λp2

k2!
(λp3)k3e−λp3

k3!

When rearranging for the last step, one notes that k1 + k2 + k3 = k and p1 + p2 +
p3 = 1. This form is significant, since it splits ρ into 3 separate pmfs, Poi(λp1),
Poi(λp2), and Poi(λp3), so we can conclude that the number of people holding
type 1, 2, and 3 coupons, respectively, are given independent of one another.

We can generalize this process of “marking” elements of a Poisson process
with types (in the example above there are 3). In an unmarked setting, |P ∩ I | ∼
Poi(λ|I |) as we have seen before. Suppose now we mark the elements of the
process with types 1, 2, ..., n, doing so with probabilities p1, p2, ..., pn such that
p1 + ... + pn = 1, and denote Xi ⊆ P to be the set of type i elements. We have
the following for disjoint intervals I1, ..., Ik :

|X1 ∩ I1| ∼ Poi(λp1|I1|), |X2 ∩ I1| ∼ Poi(λp2|I1|) ,..., |Xn ∩ I1| ∼ Poi(λpn|I1|)

|X1 ∩ I2| ∼ Poi(λp1|I2|), |X2 ∩ I1| ∼ Poi(λp2|I2|) ,..., |Xn ∩ I2| ∼ Poi(λpn|I2|)

...
...

|X1 ∩ Ik | ∼ Poi(λp1|Ik |), |X2 ∩ Ik | ∼ Poi(λp2|Ik |) ,..., |Xn ∩ Ik | ∼ Poi(λpn|Ik |)
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continuous setting

Let X, Y have joint density fX,Y . Just as we did for discrete variables, define

fX |Y (x|y) =
fX,Y (x, y)
fY (y)

provided that fY (y) > 0

Even though the probability that Y is some fixed value is 0 in continuous
settings, we can still ask P(X ∈ A|Y = y), and this is given by

P(X ∈ A|Y = y) =
∫
A

fX |Y (x|y)dx =
1

fY (y)

∫
A

fX,Y (x, y)

One can verify that, as expected,
∫
R
fX |Y (x|y) = 1, since this is just

1
fY (y)

∫
R

fX,Y (x, y)dx =
fY (y)
fY (y)

= 1

Recall that we can recover the density of fX by integrating over the joint
density: fX =

∫
R
fX,Y (x, y)dy. From above, this is

∫
R
fX |Y (x|y)fY (y)dy.
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That’s it! Cheers
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